Using Hidden Markov Models and Spark to Mine ECG Data

نویسنده

  • Jamie O’Brien
چکیده

New potential risk factors for cardioembolic strokes are being considered in the medical community. The presence of these factors can be determined by reading an electrocradiogram (ECG). Manual ECG analysis can take hours. We propose combining accurate Hidden Markov Model (HMM) techniques with Apache Spark to improve the speed of ECG analysis. The potential exists for developing a fast classifer for these risk factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing Busy Customer Portfolio Using Hidden Markov Model

Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...

متن کامل

An Adaptive Approach to Increase Accuracy of Forward Algorithm for Solving Evaluation Problems on Unstable Statistical Data Set

Nowadays, Hidden Markov models are extensively utilized for modeling stochastic processes. These models help researchers establish and implement the desired theoretical foundations using Markov algorithms such as Forward one. however, Using Stability hypothesis and the mean statistic for determining the values of Markov functions on unstable statistical data set has led to a significant reducti...

متن کامل

Electrocardiogram Signal Processing using Hidden Markov Models

The processing of electrocardiogram signals (ECG) using Hidden Markov Models (HMM) methodology is presented. The proposed framework enables complex ECG signal processing with all the necessary steps resolved by HMM approach. Firstly, general description and comprehensive survey of actual HMM state of art is carried out. Secondly, the ECG processing methods as noise removal, characteristic point...

متن کامل

Hidden Markov Models in Wavelet Analysis

The paper deals with a mathematical model using a structure designed for an application of pattern recognition in ECG signals. The overall process of recognition is consist of generation of a code book, vector quantization, Markov model learning, and recognition. A Hidden Markov Model (HMM) structure with vector–valued observation sequences can be used for the characterization of cardiac arryth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014